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Magnetoconductance in multiprobe systems 

A B Pr€tre 
The Blackett Laboratory, Imperial College of Science, lkchnology and Medicine, Prince 
Conson Road, London SW7 2 B Z  UK 

Received 24 June 1991 

AbslrpeL A flexible method is presented for calculating the conductance coefficients 
of small multiprobe devices in terms of realapace Green functions in a discretized 
space. Wlhin the independent-panicle appmximalion systems with arbitrary magnetic 
field and local potential can be dealt with. The melhcd based on a lransparent 
analytical formula for the differential flming a c m  an interface dividing the 
phasecoherent eondudor: the G m  funetion is required only on s i l a  a1 this inlerface 
and for energies at the Fermi surface as T -+ 0. The derivation of this formula is 
relativeiy simple and based on physical arguments. 

This formula is proved to be equivalent 10 rigomus linear-response expressions for 
conductance cwliicienu. Iu lower information requiremenls are parlicularly imponant 
for the efficiency when calculating lhe conductance by finitedifference approaches. 

1. Introduction 

The understanding of quantum phenomena revealed in mesoscopic physics has re- 
quired a new formulation of transport properties, suitable to the phase-coherent 
regime. A particularly convenient formalism relates [1,2] the conductance coefficients 
to the transmission probabilities between the contacts. Recently, it has been rigor- 
ously demonstrated [3,4] that this formalism is equivalent to electrical linear-response 
theoty, with the by-product of relations between the transmission amplitudes and the 
Green function of the system. 

In this paper, starting from slightly different physical arguments, new conductance 
expressions for the mesoscopic regime are derived in a most direct way. The main 
result is a formula for the differential transmission current across an interface in 
terms of the Green function at the interface. It is a vety general expression for 
independent-particle transport between two contiguous systems, owing much to the 
scanning tunnelling microscope theory presented in [SI. It is the starting point for 
retrieving the expression for the conductance coefficients of a multi-terminal device. 

In section 2 the ‘multi-branch’ system is introduced, intended to be an extension 
of the multi-lead system. It is worth leaving the freedom for the branch to be other 
than a straight ordered lead, since the conductance coefficient does not depend on 
the specific modes but only involves Green functions. We can imagine more general 
semi-infinite branches for which we know the Green function. 

In section 3 the expression for the differential current is derived, in the form of 
a two-terminal conductance. In section 4 it is shown how it can be generalized to 
multi-terminal conductance coefficients, simply by adapting the boundaty conditions 
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in order to let the current flow from one branch n to all other branches and retaining 
only the contribution to branch m, m # n. 

Section 5 is devoted to a mmparision with Baranger and Stone's rigorous expres- 
sions for the conductance in the linear-response approximation [4]. 

The conclusions contain some indications about the numerical implementation of 
the method 

2. Multi-branch system, Hamiltonian 

The time independent tight binding Hamiltonian H describes a system of non- 
interacting spinless electrons with charge e, at T = 0, subject to an effective potential 
V and a magnetic field B characterized by the vector potential A. H is taken to be 
of the form 

where the first sum runs over all lattice sites and the second sum runs over all 
the ordered couples of nearest-neighbour lattice sites. (See for example [6] as a 
justification for the detailed form of such a Hamiltonian. For the purpose of this 
paper only the form of equation (1) matters.) 

A finite central region (the probe) is joined by several branches to various 
chemical-potential reservoirs at infinity. The geometrical shape and Hamiltonian 
matrix elements of the probe are not subject to any constraints. It should be possible 
to determine the Green function of the isolated branches on some interface. 

The chemical-potential reservoirs conform to the ones originally considered by 
Biittiker [2] in his model for a multi-terminal conductor. (i) They are large enough 
relative to the conductor, for any steadystate current flowing from or to them not to 
affect the constant value of their chemical potential, p l .  (U) No particle entering the 
reservoirs returns to the conductor without an inelastic event (and the reservoirs are 
indeed the only part of the system where phase-randomization does occur). (iii) Each 
branch reaches its reservoir in such an adiabatic way that the interface between them 
generates no additional resistance. 

Biittiker [2] let the potentials p, be arbitrary within a narrow enough range 
at the Fermi energy, for the energy dependence of the transmission and reflection 
probabilities T,, in this range to be negligible, and expressed the current coming 
out of each lead m @y means of the standard Landauer counting argument) as 

where the identity derived from current conservation E, T,, - N,,, = 0 is in force. 
(Here NI is the number of quantum channels in lead 1. Tmn = E.. r j  T mn,ij l  . .. T mn+j . . 
denotes the probability of a carrier incident in lead n in channel j to be transmitted, 
or reflected if m = n, into lead m into channel i.) 

Biittiker's multi-terminal Landauer formula (2) expresses the current response 
of a multi-terminal conductor in terms of applied external voltages on the leads, 
V, = p l / e .  The crucial feature of Biittker's approach is to treat the current and 
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voltage probes on equal footing: if a given set of injected currenls is tixed instead, 
then the corresponding voltage response is found by appropriately inverting equation 

Baranger and Stone [4] rigorously derived the electrical linear current response 
of a multi-lead sample with applied constant voltages on the leads at frequency 0 
in the limit of Sl going to zero. The phase-breaking mechanism was introduced 
via the infinite perfect leads, which in the linear-response model mimick well the 
boundary conditions of large phase.-randomizing reservoirs. The scattering version of 
their results confirmed Biittiker's multi-terminal Landauer formula (2). 

The multi-branch sample chosen here is explicitly attached to chemical potential 
reservoirs, allowing a rather physical derivation of the current picture. Putting one 
reservoir at an infinitesimally higher potential than the others one can deduce the 
boundaly conditions, which consist of imposing only outgoing states in all other 
branches, and then express the transmission currents in terms of Green functions. 
The differential transmission currents, normalized by e-', therefore represent the 
differential conductance response of the sample, g,, for m # n, when subject to an 
externally applied voltage configuration. 

(2)- 

, 

3. 'bo-branch conductance 

Choose a finite interface dividing the system into a LHS part A and a RHS part B. 
Without loss of generality, the 18 lattice is required to have no lattice sites on the 
interface. lb calculate the differential conductance from A to B through the interface, 
the same procedure as in [SI is used, but extended to a non-symmetric Hamiltonian 
produced by the magnetic field. 

Define 

H(O) is the Hamiltonian corresponding to the systems A and B separated by a hard 
wall erected on the interface. PM shall denote the projection operator on the lattice 
site set M, let IA  (IB) be the set of lattice sites n (n'), contributing a non-vanishing 
amount to (3) (roughly speaking they are the 18 interface on the A (on the B) side), 
see figure 1. 

Eigenstates of H(') confined by the hard wall to one side or other form a complete 
set. Those on the A side, Ip!io)), are of the form, 

p A l d o ' )  = Id) p B l d o ' )  E o  (6) 

the set of 19:) being a complete set of eigenfunctions of PAH(0)PA on A satisfying 
appropriate boundary conditions. [p!io)), corresponding to the hard wall in place, has 
no current sources on the B side, only at 00 on the A side. When restoring the full 
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F@m 1. An arbitmy two-branch system. The dashed line indica& an intesfacc I 
dividing it up into WO semi-infinite subaystems A and B. No lattice situ arc on I .  The 
circled ( c e )  laltice situ indicate the set I A ( I B ) ,  i.e. lhe lattice-site (18) version of 
I on the A (B) side. 

Hamiltonian, H = H(') + H(' ) ,  and removing the hard wall, the eigenstates I&')) 
of form (6) develop into eigenstates Iq,,) of H with the same energy E,,, 

G and do) are the causal Green functions of H and H('), and one can wTite 

(9) G(')= PAG(')PA+ PEG( 0)p _. -. A + G(O), 

The trick of removing the barrier is going to be used to calculate the current 
flowing from A at Fermi energy EF + e6V to B at Fermi energy E,: states 1~2')) 
have sources only in the reservoir at 03 in A, and so do Ip-), since removing the 
barrier introduces no new sources. 

For the purpose of proof an infinitesimally small absorption mechanism is built 
into medium B, by adding on the B side an infinitesimal imaginary component, 
-iC,e > 0, to the energy. The idea is that the absorption taking place in B has to 
be balanced by the current flowing into B across the interface. 

The time independent Schrijdinger equation for an eigenstate I + E )  of the system 
(A U B) reads, on the B side, 

( E - i c ) + = z  :V-eA ++V+. l 2  
By multiplying equation (10) by qY, subtracting from the resulting equation its am- 
p l e ~  cnnjugate, and then integrating over B, one obtains 
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with 

being the general expression for the electric current due to the state 14) in presence 
of local and electromagnetic potentials V, A and (o. 

Here BB denotes the surface of B. For the states I(oJ of the form (6), (7), 
contributions to the current from the surface at CO vanish because of absorption, so 
that an expression arises for the current transmitted from A to B due to the state 
1%): 

Now the current must be summed over all modes with energies between EF and 
EF + e6V so that the current 6jT from A to B induced by 6V is 

The differential conductance is then 

SBA(EF) = -(EF) d d V  jT = -2e2c - / d a  h ( c . : I T ~ ~ G ~ ” G ~ ’ T , , I ( ~ : ) ~ ( E =  - EF). (15) 

Noticing that 

yields the expression 

Note that, due to the form of the Hamiltonian (I), the four implicit sums in this trace 
only run over the interface between A and B (two over .IA and two over I,). 
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4. Multi-braneh conductance ewffieient 

In an NL-branch system, the conductance from branch n to branch m # n is found 
in much the same way. Imagine reservoir n is at a chemical potential EF + e6V 
while all the others are at EF, and erect (NL - 1) non-intersecting interfaces J , ,  1 = 
1,. . . , NL, I # n, each one disconnecting from the system the corresponding branch 
1 (subsystem SI), and the whole of them leaving a subsystem connected with reservoir 
n, to be called (S, U D), D standing for the disordered part. I := u~l,l , , ,  JI  (see 

Note, this prescription of how to choose the interface Z is one among other 
possibilities. For example one could choose instead the partition of figure 2(b), which 
according to the circumstances could be more advantageous in practical calculations, 
where I is usually taken as short as possible. 

figure 2(4)- 

. 

F b r e  2 (a) Panirion of a &branch system via inteifaees 4 (dashed liner).l= 2, . . . ,6, 
suitable for calculating the conductance coefficienls gm1, m = 2,. . . ,6 .  (6) Possible 
alternative panilion of a 6-branch system. suitable for calculaling spesiKcally the con- 
ductance coefficient 911 (as well as (gzl + g a )  and (951 -boa)). 

Again the interfaces are required to contain no lattice sites, to allow a unique 
definition of 

H(O) is the Hamiltonian corresponding to the subsystems (S,, U D )  and S,, 1 = 
1,. . . , NL, I # n, separated by a hard wall erected on the interface I. The transmis- 
sion current flowing from branch n to branch m through J,,, is recognized to be the 

Ip,,)(s-un) (complete set on (S, U D)) and E,, E [EF, EF + e6Vl; and in branch 
m is built a fictitious absorption mechanism. 

superposition of the states lip,) = (1 + G(o)T)llp$o)), for lip$')) = qsnuD)llpa (0)) = 

The corresponding differential conductance then is given by 
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where T, G and G(’) refer to the Hamiltonians (I), (19)-(21), and low indices indicate 
on which subsystems these operators have been projected, as in the preceding section. 

Again the four implicit sums in the trace only run over the interface I. 
The hidden difference to the two-branch system, is that now I Ts borders on the 

(S,, U D )  side the whole collection of interfaces J I ,  I = 1,. . . , NL, I # la, and not 
just the interface J,. 

5. Comparision with Baranger and Stone’s formalism 

The purpose of this section is to compare expression (22) for the differential con- 
ductance coefficient to the one rigorously derived by Baranger and Stone [4] from 
linear-response theory. For this comparision the multi-branch system is restricted to a 
hvo-dimensional multi-lead probe (see figure 3(u)), which is the system considered in 
[4]: the branches are here straight, ordered leads. Ordered means in this context that 
the local potential is invariant under translations parallel to the lead. In each lead I ,  
C, denotes a cross section line located in the asymptotic region of lead 1 ,  where the 
electric field is zero. A local coordinate system (I,, y,) is defined, the q-axis being 
parallel to lead 1 and pointing to its asymptotical region (see figure 3(6)). Explicit 
use shall be. made of the local coordinates belonging to the cross-section lines ; by 
convention, in each lead 1, the origin of the z,-axis is chosen so, that the equation 
I, = I +  1/2 defines the cross-section l i e  C,. In the asymptotic region the magnetic 
field is required to be perpendicular to the leads and constant in each lead 1. 

P@re 3. (U)  An arbilrary multiprobe structure. A possibly disordered region (halched) 
is mnnsted to NL suaighi, ordered leads which are used io feed current or measure 
voltage. (b) Asymptotic region of lead 1. Ct is a er--section line in lead I located in 
the asymptotic region (non-hatched) where the elecvic field is zem. A local coordinate 
system (z , ,  y,) is defined, the q-axis being parallel to lead I ,  pointing to its asymptotical 
region, and having the origin such that the equation z, = I + 112 defines the cmss 
section line C,. 

Following [4], the conductance in scattering language invokes eigenstates of the 
infinite perfect leads and transmission amplitudes between them, for energies near 
the Fermi level. 
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Given an infinite perfect lead 1 in a Landau gauge with translational symmetry in 
the if direction, its eigenstates can be written as (equations (55)-(58) in 141) 

where 06" is defined as the outgoing particle flux carried by I€$(')) through the lead 
cross sedion C,, and the xs are normalized as 

Y I  

and satisfy the reduced transversal Schrddinger equation. 
t,,,,, is defined as the transmission amplitude for going from mode a in lead 

n to mode c in lead m; the transmission amplitudes appear in the scattering-wave 
states as (equation (79) in [4]) 

where 

E' := J da &(E - e,) 
a 

denotes a restricted sum over a at energy E .  Baranger and Stone's expression for 
the conductance coefficient from lead n to lead m is (equations (77), (89) and (B16) 
respectively, in [4]) 

Here G, is the causal Green function; KOp( 1 )  refers to lead 1 and is a Hermitian 
operator which represents the current going through the bonds between the columns I, = I and q = l +  1: 

with 
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where the sites are labeled by pairs of integers in the local coordinates (q, y,). 
For T = 0, gmn only depends on the Fermi energy E = EF as 

Equation (30) can be rewritten as 

Now the equivalence will be shown between equations (33) and (22). 
In each lead 1, 4 shall denote the projection on zI = 1, Pl+l the projection on 

q = 1 + 1 ;  
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with the lattice sites in the local coordinates z,, 

Pl+lV+Pl := (PIVP,+,)'.  (35) 

H(0)  := H - H(1). (38) 

H(') mrresponds to a system with hard walls on all the cross sections except on C,. 
The partition of the multi-lead probe is fully analogous to that of the multi-branch 
system in the preceding section; for 1 f n, the previous interfaces J ,  are now straight 
cross sections C,. Using the same notation as before, S,,, is the disconnected part 
of lead m, and (S, U D) is the subsystem connected to the reselvoir n, D dendin 

are labeled again according to their projections on the subsystems. In particular 
the disordered part of the N,,-lead system limited by the cross sections. T and G( OY 

Equation (33) then reads 

From eaual 

Ib get rid of the operators K,,,(n), it can be observed that 

is the state that develops on (S, U D) from the eigenstate of an h%ire 
straight, ordered lead n, by first cutting it at zn = (n + 1/2) and then attaching the 
[n + 1, m[-part of it to D. This process is discussed in appendix A and schematically 
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x .  
. . . .  

c 
C 

Plgure 4. (a) Lead n attached 10 the disordered pan 
of me device, n = 5,  that h sptem (S, U D )  of 
section 5. There is a hard wall along the emss section 
of each lead except in lead n = 5. (6) Disordered 
pan D of (S. U D )  and inj5nh smight ordered lead 
n = 5 (q --,- I),  not yet connected. (c) me ] - 
m, n']-part of lead n (?--,"q). 6, . xn 

consists of passing from the disconnected system in figure 4(b) to the disconnected 
system in figures 4(a) and 4(c) respectively. 

Equation (40) then becomes 

This is now a sum over all the scattering-wave states at energy E belonging to the 
subsystem (S, U D). The same algebra as displayed in equation (17) relates this 
sum to the unperturbed Green function on (27, U D). The determination of the 
normalization factor presents some subtleties, which are dealt with in appendix B. 
Equation (BS) expresses the correctly normalized relation. Making use of it, (41) 
finally turns into equation (22). This proves the equivalence between equations (33) 
and (22), which are in turn Baranger and Stone's conductance coefficients and the 
ones derived in this paper, for the discretized case and zero temperature. 

Note, the differential conductance g z ,  at an arbitrary temperature T can he 
expressed, in electrical linear response, as a Fermi-statistics weighted integral of 
gZEo(EF) over the whole continuum spectrum: 

(see for example equation (77) in [4], which is reproduced here as equation (26)), 
so, with this method, the differential conductance at arbitrary temperature takes the 
form 



where of course the equivalence to [4] still holds. 
In the frame of particle independence, while the formula (41) for an arbitrary 

T expresses the differential conductance in electrical linear response, its (T = 0 ) -  
version (see equation (22)) is an exact expression for the differential conductance, as 
can be verified by its derivation in sections 3 and 4. 

6. Conclusions 

A new useful expression for the conductance coefficients of multiprobe systems has 
been presented in discretized space: it is suited to the mesoscopic phase-coherent 
regime, within the independent-particle approximation. The derivation is transparent, 
based on physical arguments, and the agreement with analogous results from linear- 
response theory has been proved. 

An important new aspect of this formula is that no specific assumptions are made 
on the asymptotic region of the terminals (called branches to stress their arbitrari- 
ness), except that they are connected to chemical potential reselwirs. Hence, on 
one hand, geometries other than multi-lead systems could become of interest and are 
treatable within this approach, provided that the Green function (GF) of each arbi- 
trarily disconnected branch is known on the end surface. There is a consequence, on 
the other hand, relevant for the presently considered multi-lead systems, concerning 
the lattice site set on which GF knowledge is required: instead of lead cross sections 
the absence of asymptotic assumptions allows the interfaces to be chosen freely, as 
long as the required topology is respected. Numerical efficiency can only benefit from 
this flexibility. 

A peculiarity of this conductance expression is that it involves, beside the t- 
matrix, the individual GFS belonging to different subsystems of the partitioned device. 
In usual algorithms, these individual GFs need to be calculated anyway to extract 
the l-matrix (or the full GF of the whole device, as is required by the conductance 
expression in [4]). Using these individual Gm explicitly in the conductance expression 
reduces, for few leads, the number of cross section columns on which GF knowledge is 
required (see [4] for a comparision). This gives rise to a further gain in computational 
efficiency. 

For numerical applications, this conductance expression is naturally suited to be 
incorporated in finite-difference techniques (slab-by-slab linking [7] or particularly 
bond-by-bond linking [6]): starting with the GF elemenls at the end surface of an 
arbitrarily disconnected semi-infinite branch, the structure is grown, say bond-by- 
bond, and at each step the projection of the GF of the current cluster is known on 
the growing surface. Growth continues until hitting the interface (or collection of 
interfaces) of the chosen partition. The same procedure is repeated for each other 
branch. In the end this p r o m  supplies the GF elements entering the conductance 
expression, and needs no updating in addition to that required by the growth itself. 
Avoiding intermediate finite clusters spares GF singularities and confers a remarkable 
stability to the algorithm. 

For the presently considered multi-lead systems, where each straight ordered lead 
is subject to a perpendicular constant magnetic field and a local, longitudinally invari- 
ant potential, the initial set of GF elements of a semi-infinite lead can be calculated 
following the elegant method described in [SI. 
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Note, a tight-binding approach to multiprobe systems which also grows clusters 
starting from semi-infinite leads and obtains the conductance by means of various 
quantities, recursively updated only on the growing surface, is described in [9]. 

As examples of other branches which may become of interest and be treated 
with this method, could be mentioned a half plane under coastant magnetic field 
connected via an arbitrary finite lead to the central part of the device, or a branch 
obtained by adiabatically widening a lead to a large region (which is the reservoir). 

This conductance expression, incorporated in bond-by-bond finitedifference cal- 
culations 161, has been suaessfully tested for a wide collection of simple two-lead 
systems and for a four-lead system (a ballistic cross). Calculations on more complex 
and new systems are underway. 
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Appendix A 

This appendix relates to the multi-lead system of section 5. The system is not the 
original one, there are hard walls on each cross section C,, for 1 # n. The subsystem 
(S, U D )  consists of the lead n attached to the disordered part D ,  limited by these 
hard walls on the other leads. An expression is derived for the states that develop on 
(S, U D) from incoming eigenstates of the ianjianife straight ordered lead n, S1-m,ml. 

Start with the disordered part D and the injinite straight, ordered lead SI--,,[ 
not yet connected, where a hard wall on C,, between zn = n and I, = (n + l ) ,  
marks the boundary of D on lead n (see figure 4(b)). 

At n' the coordinate 2% takes the value n, the prime indicates that it refers to 
sites on the infinite lead SI-,,,[, whereas n refers to sites on D. 

Let H(0) = H p +  If(') be the Hamiltonian corresponding to the system 
of figure 4(b). The Hamiltonian ( H ( s m u D )  + H, ), corresponding to the two 
disconnected systems (S, U D) and SI-,+,] (see figures 4(a) and 4(c) respectively), 
is restored by acting on the system of figure 4(b) with the perturbing Hamiltonian 

I-==.-'] 

If(') = I4P,~VPn+1 + P,+lV'Pnr)l + [PnVP,+l + p,+lV+p,l (AI) 

where the first bracketed summand breaks the infinite Sl-m,ml into the two semi- 
infinite Sl-m,n,l and SIn+l,ml, and the second bracketed summand attaches S[,+l,mI 
to D. (P,VP,+, and P,+lVt& contain the original Hamiltonian bonds a m s s  the 
cross section C,, their definition was given in equations (34) and (39.) 

on the infinite lead 
and therefore an eigenstate of If('). Under the action of H(') it develops into an 

IE.'")) (see equation (23)) is an eigenstate of If!) 
]--.-I 



Appendix B 

We consider in this appendix the multi-lead system. It has been partitioned into the 
subsystems (S,, U D) and S,, 1 # n, by erecting hard walls on the cross sections C, 
for I # n. This partition is referred to as the unperturbed system as was done in 
section 5, with corresponding H(O) (defined in equations (36>-(38)) and do). Only 
the projection of do) on (S, U D), q?=,,,), will be considered, and the purpose is 
to determine the normalization factor entering the relation between Green function 
and scatteringwave states at same energy on the subsystem (S,, U D ) ,  to make the 
link between equations (41) and (22). 

The causal Green function G of the full Hamiltonian H on the bare multi- 
lead system (without hard walls) must satisfy the same boundary conditions as the 
scattering-wave states in equation (25). Therefore q:luD, satisfies the same bound- 
ary conditions as the incoming functions It;(")) in lead n plus backscattered waves 
on (S, U D). The eigenfunctions of are either scattering-wave states OP the 
form 

(see equation (17)). 

relation of the set of eigenfunctions Ic$(")) on an infinite lead 
The normalizing factor N e ,  can be determined by looking at the completeness 

from which 

We now make explicit the link between J d a  and 
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for the scattering wave state8 of H(O) on ( S ,  U D). In virtue of the one-to-one 
mapping relation (BI) it is sufficient to look at the dispersion relation of each channel 
in the infinite lead n. 

where S?', defined as the outgoing particle flux camed by IC$'"'), has been identified 
with the reversed longitudinal velocity,(-~!~")), of I[;("'). 

FinaUy gathering (B2),(B3) and (B4) yields the expression 
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